Chessboard
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 11078 | Accepted: 3449 |
Description
Alice and Bob often play games on chessboard. One day, Alice draws a board with size M * N. She wants Bob to use a lot of cards with size 1 * 2 to cover the board. However, she thinks it too easy to bob, so she makes some holes on the board (as shown in the figure below). We call a grid, which doesn’t contain a hole, a normal grid. Bob has to follow the rules below: 1. Any normal grid should be covered with exactly one card. 2. One card should cover exactly 2 normal adjacent grids. Some examples are given in the figures below: A VALID solution. An invalid solution, because the hole of red color is covered with a card. An invalid solution, because there exists a grid, which is not covered. Your task is to help Bob to decide whether or not the chessboard can be covered according to the rules above.
Input
There are 3 integers in the first line: m, n, k (0 < m, n <= 32, 0 <= K < m * n), the number of rows, column and holes. In the next k lines, there is a pair of integers (x, y) in each line, which represents a hole in the y-th row, the x-th column.
Output
If the board can be covered, output "YES". Otherwise, output "NO".
Sample Input
4 3 22 13 3
Sample Output
YES
Hint
A possible solution for the sample input.
Source
,charlescpp
独立集:
独立集是指图的顶点集的一个子集,该子集的导出子图不含边.如果一个独立集不是任何一个独立集的子集, 那么称这个独立集是一个极大独立集.一个图中包含顶点数目最多的独立集称为最大独立集。最大独立集 一定是极大独立集,但是极大独立集不一定是最大的独立集。
支配集:
与独立集相对应的就是支配集,支配集也是图顶点集的一个子集,设S 是图G 的一个支配集,则对于图中的任意一个顶点u,要么属于集合s, 要么与s 中的顶点相邻。 在s中除去任何元素后s不再是支配集,则支配集s是极小支配集。称G的所有支配集中顶点个数最 少的支配集为最小支配集,最小支配集中的顶点个数成为支配数。
最小点的覆盖:
最小点的覆盖也是图的顶点集的一个子集,如果我们选中一个点,则称这个点将以他为端点的所有边都覆盖了。将图中所有的边都覆盖所用顶点数最少,这个集合就是最小的点的覆盖。
最大团:
图G的顶点的子集,设D是最大团,则D中任意两点相邻。若u,v是最大团,则u,v有边相连,其补图u,v没有边相连,所以图G的最大团=其补图的最大独立集。
一些性质:
最大独立集+最小覆盖集=V
最大团=补图的最大独立集
最小覆盖集=最大匹配
#include#include #include using namespace std;int m,n,k,tot;int map[1610][1610],g[40][40],tg[40][40];int linker[1610],vis[1610];int DFS(int u){ int v; for(v=1;v<=tot;v++) if(map[u][v] && !vis[v]){ vis[v]=1; if(linker[v]==-1 || DFS(linker[v])){ linker[v]=u; return 1; } } return 0;}int Hungary(){ int u,ans=0; memset(linker,-1,sizeof(linker)); for(u=1;u<=tot;u++){ memset(vis,0,sizeof(vis)); if(DFS(u)) ans++; } return ans;}int main(){ //freopen("input.txt","r",stdin); while(~scanf("%d%d%d",&m,&n,&k)){ int x,y; memset(g,0,sizeof(g)); while(k--){ scanf("%d%d",&x,&y); g[y][x]=1; //注意这里是y行x列,被WA了好几次。。。。。。。。。。。。 } tot=0; memset(tg,0,sizeof(tg)); for(int i=1;i<=m;i++) for(int j=1;j<=n;j++) if(g[i][j]==0) tg[i][j]=++tot; memset(map,0,sizeof(map)); for(int i=1;i<=m;i++) for(int j=1;j<=n;j++) if(tg[i][j]!=0){ if(i>=1 && tg[i-1][j]!=0) map[tg[i][j]][tg[i-1][j]]=1; if(i<=m && tg[i+1][j]!=0) map[tg[i][j]][tg[i+1][j]]=1; if(j>=1 && tg[i][j-1]!=0) map[tg[i][j]][tg[i][j-1]]=1; if(j<=n && tg[i][j+1]!=0) map[tg[i][j]][tg[i][j+1]]=1; } int ans=Hungary(); if(ans==tot) puts("YES"); else puts("NO"); } return 0;}